
Solid Environment Reconstruction on the GPU

Rouslan Dimitrov

May 15, 2007

Senior year research project at Jacobs University Bremen
as a formal requirement for a Bachelor degree in
Electrical Engineering and Computer Science

Abstract

Solid environment reconstruction performed entirely on the GPU is a

relatively unexplored topic as of the date of writing. This paper presents a

multi-pass algorithm that converts raw data from a range sensor or a stereo

camera into a quad-mesh. A threshold parameter that governs the allowed

deviation from the sample points is introduced. In this way, the number of

generated faces can loosely be controlled and changed dynamically. The

algorithm keeps a quad-tree as an internal data structure, which results in

generation of square faces only. Although the face count can be minimized

by using more complex polygons, this is of little use in practice as typically

the solid environment is used for collision detection and such systems are

very e�cient for quadrilateral surfaces.

1



Acknowledgments

Special thanks to Gernot Ziegler for being my valuable friend and mentoring
my progress in graphics programming.
A warm thank you to Galina Stefanova and Mariana Rashkova for o�ering me
moral support throughout both my di�cult and happy moments.

2



1 Introduction

The goal of the presented reconstruction algorithm is to build a solid environ-
ment as a quad-mesh from a depth-map. It is developed speci�cally for execution
on a programmable GPU that supports a form of feedback (eg. frame bu�er
objects), oating point textures and branching.

There are several pre-processing stages that build a point in 3D with an
associated normal for every pixel of the input depth-map. Using the implicit
connectivity information of the depth-map, smooth quadrilateral faces are gen-
erated in image space and then transformed into local 3D space.

A likely application of such reconstruction algorithms is in mobile robots
that need to maintain a model of the surroundings, which is to be used for
path-�nding, for example. Because they have a limited supply of energy and a
power-e�cient computer, any algorithm used should run in minimal processing
time. The presented algorithm takes altogether a few milliseconds on a low-end
graphics card, while completely freeing the main CPU for other tasks.

2 Related Work

Our algorithm is related to surface simpli�cation methods because the input
data can be triangulated and then simpli�ed. There are many well-known such
methods that are developed for the CPU. Garland et al [3] give a detailed
overview of available surface simpli�cation methods and the ones related to our
goal generally fall into �ve categories.

2.1 Surface Simpli�cation

Vertex Decimation Soucy et al. [7] describe a method to iteratively remove a
vertex from the generated mesh with high e�ciency. In general, however,
it is di�cult to parallelize such an algorithm, as after a removal of a vertex,
new triangles are generated and a metric is updated based on which the
next vertex is chosen. Another drawback of this class of algorithms for
our purpose is that vertex decimation preserves topology, while we are
interested in merging closely spaced regions.

Edge Contraction Garland et al. [3] propose an algorithm based on edge
contraction that simpli�es a given mesh by iteratively removing edges.
Although their approach is serial in nature, too, it has the bene�t of
merging initially unconnected regions. Parallelization on local domains at
the cost of reduced quality seems possible, but will result in doing locally
optimal rather than global edge selection. The decision is based on addi-
tional information stored per vertex and the process of edge contraction
after an edge is selected is mostly a local operation.

Vertex Clustering This class of algorithms relies on �nding a bounding box
around the model and assigning its vertices on a grid. Then each cluster
gives a single vertex, whose position is determined based only on the ver-
tices inside that cluster. An octree implementation can typically improve
performance. This method is easily parallelizable and will be thoroughly
investigated. A drawback [3] is loose error bounds and lack of control.

3



Surface Sampling [1] Ziegler et al. propose a novel algorithm for sampling
a surface and generating a point cloud from it. Their algorithm runs
entirely on the GPU and is similar to vertex clustering. Again, a grid
is built within the bounding box of the model, but it's �lled not with
vertices, but with a sample if the given surface passes through the volume
of the cluster. This algorithm is very similar to the one proposed.

Probability Liu et al [6] solve the surface simpli�cation problem with a prob-
abilistic approach. They iteratively minimize an error metric, which is
based on the assumption that the distance between a sample and a plane
follows a Gaussian distribution. Then, a model is iteratively re�ned by
adding or removing planes. Although their �ndings produce very good
results, the running time of the algorithm is far from real time.

All of the above mentioned algorithms were carefully investigated, but none
of them lends itself directly to a reasonable port to the GPU. Their serial nature
allows for parallelization of local space domains, which in turn leads to compli-
cations and cache misuse. In addition, they solve a more di�cult problem by
operating on arbitrary meshes, while we can assume a regular one made out of
quads.

However, important ideas are gathered from the above descriptions - the
proposed algorithm uses data clustering and maintains a loose error metric,
which governs how surfaces are split. It makes local decisions in parallel and
is based on image processing techniques. Probabilistic approaches were not
considered.

2.2 Image Processing

The problem of quickly �nding a rough solid representation of the depth map
can potentially be solved entirely with image processing techniques.

Region Detection Ziegler et al. [2] propose an algorithm for detecting regions
running solely on the GPU. Although the original application is the de-
tection of empty regions in sparse matrices in PDE solvers, the algorithm
suits our needs as well. The performance is real-time, and although the
quads will have a side length of power of 2, it o�ers a nice trade o�.

A modi�cation of this algorithm is used to detect at surfaces in image space,
which are then transformed to robot space in 3D.

3 Overview

The main idea of our method is to operate mainly on generated surface normals
because smooth surfaces have nearly parallel normals. As normals start to
deviate more than the allowed threshold from a current average, the considered
region is split.

The proposed algorithm has multiple interconnected but independent pro-
cessing stages. They can be grouped into six main classes:

Filter input noise, deal with uncertainties and reduce the size of the input data,
so that later stages run faster with little loss of quality.

4



Transform the input data from various sensors into a well de�ned form - a
point-list texture that maps every depth value to a point in 3D.

Convert Convert the point-list texture to a normal map + z channel.

Build the quad-tree and detect at surfaces.

Locate faces in image space by traversing the tree.

Project the image space regions into local 3D space.

3.1 Filter and Reduce Size

Figure 1: Filtering 3x3 portion of the depth map

The input data is passed on to a median �lter with a 3�3 kernel. In addition,
every 3� 3 pixels contribute to one pixel of the �nal image. This in e�ect will
reduce the depth map size by a factor of 9 and is expected to signi�cantly reduce
noise and erroneous pixels, which typically occur in sensor data.

Consider the 3�3 subimage of the input depth map shown in �gure 1. After
the median �ltering step, we will replace all 9 pixels with just one. The middle
sample of depth 0.9 is erroneous since it is very unlikely that there is such a
small hole in the object. The �rst step is to sort in ascending order the 9 depth
samples as shown in �gure 1. Then the middle one (hence the term median
�ltering) is chosen as a representative for the whole region.

In the implementation, an unrolled bubble sort is used to determine the �ve
smallest samples, out of which the biggest one is chosen as output.

3.2 Transform

This step is sensor-speci�c, though most sensors and simulators should fall into
two general categories. To ease the discussion, let's consider a laser sensor that
has 2 parameters - � and �, which specify the angle which the laser makes with
the local horizontal and vertical axes. The sensor uses an interferometer to
determine the distance to the object that reects back the laser beam. Note
that in this way, a straight wall in front of the robot will appear spherical in
the depth-map.

There are two straightforward ways to control the parameters:

� Fill a pixel at normalized coordinates (�; �) of single channel texture with
the currently measured depth. In other words, the sensor o�sets the pa-
rameters by �� for each n ���; n = 1; 2; 3:::

5



� Another way to alter the parameters is in a ray-tracer-like manner, where
� and � are varied non-uniformly. Instead, imagine a grid, a distance p
from the sensor. Then the length of every �!op, jopj is stored at the grid
intersection which �!op crosses. See �gure 2.

To make the problem concrete, we need a couple of parameters:

� �max - the �eld of view, or the maximum deviation in radians the sensor
makes.

� res - the resolution of the texture/grid used as output of the sensor and
input of the current stage.

Figure 2: Transformation

As seen in �gure 2, we would like to store the coordinates of every pi in
robot space. To simplify the problem, let's work in 2D - the concept is easily
extended to 3D. By knowing �i then:

diz = di cos(�i)

dix = �di sin(�i) (1)

Then, (dix; diz) are stored in the (1-dimensional, in this case) array-like con-
tainer, at position i. This step is important, as we locate the at faces in
depth-map space, in terms of i, and then need to transform them to robot
space.

Finding �i is a little involved in the ray-tracer-like case:

� const ��

�i =
�max

res
i

� varying ��

�i = arctan(
i ��T

p
) (2)

where p is the distance from the grid to the local origin. �T can be spec-
i�ed as an input parameter, however it has unclear and more importantly

6



dependent on p physical meaning, so we need to reexpress it in terms of
our known parameters. Thus,

res

2
�T = p tan(

�max

2
)

�T =
2p

res
tan(

�max

2
) (3)

Substituting in (2)

�i = arctan(i � 2

res
tan(

�max

2
)

| {z }

c

)

Here c is constant and must be computed only once.

Rule 2 is performed for all i, or in the case of a depth-map, for all pixels.
Practically, the point list is stored in a 3-channel oat texture, where for
every pi;j from the input depth-map, a transformed (Pxi;j

; Pyi;j ; Pzi;j ) is
stored at location (i; j)

3.3 Convert

To �nd the normal for every input pixel pi, we need to �nd the local directional
derivatives:

�!ni = r(pi) = (Sxi
; Syi ;�1) (4)

Let's �nd Sxi
in 2D. Although we could use the current pixel and one neigh-

bor, this would produce asymmetric results. Another approach is to judge the
local slope on the left and right neighbors of pi. Thus,

Sxi
=

�dxi

�xi
(5)

If the results from the previous stage are already available, we can compute
(5) directly. However, there is a trade o� between the number of stages and
their complexity. It might be reasonable (depending on the input depth-map
resolution) to combine the transform and convert stages and omit one cycle
through the graphics pipeline.1 In the rest of this sub-section, a stand-alone
convert-stage is derived.

Let's project the two depths involved in (5) into local 3D space and perform
the calculation there:

Sxi
=

di+1 cos(�i+1)� di�1 cos(�i�1)

�di+1 sin(�i+1) + di�1 sin(�i�1)
(6)

Finding
cos(�i) = cos(arctan(i � c))

for every input pixel is expensive, so we need to simplify the expression.

1In addition, the transformed depth-map might not even be needed for some uses of the
algorithm, such as feature detection, rather than surface reconstruction.

7



Using �i = arctan(i � ci), in the �gure above, we set the opposite side of �i
to i � c and the adjacent side to 1. Thus we see that

cos(�i) =
1p

i2c2 + 1
(7)

sin(�i) =
i � cp

i2c2 + 1
(8)

After substituting in (6), we need to normalize (4)

n̂ =
�!ni
jj�!ni jj

and store it in the output texture.

3.3.1 Approximation

Taking four divisions and four square roots per normal is computationally ex-
pensive and if j�maxj � 1, equation (6) can be signi�cantly simpli�ed. Assume
(�gure 2):

� �x � �x+ �x

� cos(�i) � 1

� di � di+1

Although the second approximation is true only for very small �i, the region
detection algorithm is relatively insensitive to the error produced here. Rather
than computing the normals based on the projection of the depth onto the z-
axis, we take the depth as it is. This results in spherical elongations of di;j and
normals being tilted away from the center of the depth-map.

In the following discussion, we use:

�T � �maxp

res
(9)

Eq. (6) is signi�cantly simpli�ed:

Sxi
� �di

�xi
(10)

By similar triangles,

�xi
di

=
�T

p

8



�xi =
di�T

p
(11)

�xi � �maxdi
res

(12)

Substituting in (10) gives,

Sxi
=

�di
d

� res

�max
| {z }

const

(13)

E�ectively we reduce the four divisions and square roots to one division.

3.4 Build

After the transform and convert stages, we have a point list of points in local
3D coordinates with associated normals stored in an array with preserved con-
nectivity information. Assuming continuous surfaces, the 3D neighbors of pi;j
are stored in the array at indices (i � 1; j); (i + 1; j); (i; j � 1); (i; j + 1), for all
0 < i; j < res.

Using this property, we build a quad-tree with the following invariant:

Quad-tree invariant 1 Every node of the quad-tree stores the averaged nor-

mal and distance of its four children. In addition, it contains the number of

faces detected below it in the tree.

In this way, the root of the tree contains the total number of faces to be gener-
ated. All leaves are chosen to be individual pixels from the normal- and depth
maps and their face count is initialized to 1. Pixel (i; j) is grouped with pixels
(i+ 1; j); (i; j + 1); (i+ 1; j + 1) and all leaves are unique. Figure 3 depicts this
visually.

Figure 3: Part of the generated quad-tree

There are several ways of how to determine whether the children of a node
belong to one region. Here, we use a decision step based on a computationally
friendly pseudo-error metric threshold, modeled after Ziegler et al. [2]. There
are two necessary conditions for merging regions:

9



� Each children contains exactly 1 region

� Let �!n avg and davg be the averaged normal and distance of the children.
Then, they form one region i� for every child i,

�!n avg ��!n i < �!n threshold (14)

davd � di < dthreshold (15)

Equation (15) is only needed if the depth map contains two parallel surfaces
separated by distance greater than dthreshold=2 and we want to depict a sharp
discontinuity at their edges. This criterion, however, increases face count in
surfaces nearly parallel to the viewing direction and is not taken into account
any further.

�!n threshold can be roughly thought of as a measure of how much the normals
within one region are allowed to vary from one-another. Thus the parameter has
a direct impact on the number of faces generated. Typically, we need the same
splitting criteria in every direction, so we let �!n threshold = (nt; nt; nt). Next to
each node in �gure 3, the number of regions below it is shown for nt = 0:2. In
this case the 16 depicted pixels contribute to 7 regions.

The following special cases should clarify the idea:

� if nt = 1, there is only one face generated

� if nt = 0, there are res� res faces generated

We note that the height of the tree is log2 res and at depth i, there are 4i

nodes. Practically, the tree is stored in a mipmap fashion as known in computer
graphics and is generated in bottom-up manner (�gure 4).

Figure 4: The quad-tree stored in mipmap fashion

3.5 Locate

After the quad-tree is generated it contains all the necessary information to
locate the square regions in image space. Each region is de�ned by four vertices
vk = (ik; jk); k = 1 : : : 4, where (ik; jk) are texture coordinates in the depth-
map. While traversing the tree, however, keeping track of one vertex and a side
length is more e�cient. After a region is located with a bottom-left corner at
(i; j) and side length a, assuming it is in quadrant I, the other vertices:

v0 = (i; j)

v1 = (i+ a; j)

v2 = (i+ a; j + a)

v3 = (i; j + a)

10



The root of the tree contains the number of regions n. The tree is traversed
n times and each traversal is assigned an index i = 1 : : : n. Let's give every
region an identi�er - id = 1 : : : n The basic idea is that every node is assigned
a range of ids that are below it. Thus, the range of the root is 1 : : : n and the
range of the other nodes is more con�ned. Nodes that have one region below
(or equivalently, range of 1) represent the quads that are saved.

The following C-like code illustrates the idea. Initially, range_low = 0,
depth = 0 and the routine is called once for every index = 1 : : : n. The last line

proc locate(int index, int range_low, int depth, ...)

{

if this node has 1 child

{

region.side_length = res / 2^(depth);

store region;

stop;

}

for each child c

{

if range_low <= index < rangle_low + c.regions_below

locate(index, range_low, depth+1, ...);

else

range_low = range_low + c.regions_below;

}

error "tree is inconsistent"

}

of code should never be reached because it signals that the quad-tree invariant
is violated.

For the sake of clarity, determining the bottom-left corner of the current
region is omitted from the code. It is a 2D vector �!v bl passed as fourth argu-
ment, which is initially (0; 0). Depending on which child we recurse into, �!v bl is
modi�ed di�erently. There are four cases:

node of recursion new �!v bl passed
bottom-left node �!v bl

bottom-right node �!v bl + (a; 0)
top-left node �!v bl + (0; a)
top-right node �!v bl + (a; a)

where a = res=2depth is half of the size of the rectangle the current node covers.
In practice, the algorithm is implemented non-recursively for speed gains

even if the target hardware supports recursion. The implementation of the
increment of �!v bl should not use branching because if-else statements are ex-
pensive on current graphics processors. Instead a constant array of four vectors
offset[4] = f(0; 0); (1; 0); (0; 1); (1; 1)g is used and is indexed with the child
index c 2 [0 : : : 3]. Then �!v bl + a � offset[c] is passed as the new bottom-left
corner.

In addition, before storing the region in the code listing, all vertices �!v k =
�!v bl+region.side_length�offset[k]; k = 0 : : : 3 need to be computed.

11



3.6 Project

After the previous stage, the vertex coordinates of the quads are known in
terms of texture coordinates (i; j) in the depth-map texture. We use the map
T : R2 ! R3 between every pixel in the depth-map and its 3D projection in
local space. The T operator is rather simple - it does a lookup at position (i; j)
in the point-list created in the transform stage. The result is a point in 3D that
is used as a vertex of the projected quad.

It should be noted that at this point, the determined regions reside in the
graphics card memory. They can be either downloaded to the CPU or directly
used for visualization (using vertex bu�er objects, for example).

4 Results and Discussion

To demonstrate the developed algorithm, a sample application in C using OpenGL
was implemented. The program uses frame bu�er objects which capture the out-
put of a stage into a texture and the same texture is fed as input to the next
stage. There is an additional stage that renders the generated surface on the
screen, using vertex bu�er objects. Data is transferred to the graphics card only
once at initialization and never sent back. All shaders are written in GLSL and
the program is optimized by using the latest OpenGL extensions that are sup-
ported on the utilized NVIDIA GeForce 6200. If-else statements are eliminated
wherever possible by using interpolating polynomials, constant o�set arrays or
conditional writes.

4.1 Normals Generation

Figure 5: Input depth-map and corresponding normal-map

On the left side of �gure 5 is the sample depth-map2 that was extensively
used during development. It shows a button laying on a at surface. Because
the button is round and has some �ne detail (four semi-spheres) as can be seen
in the upper-right part of the image, it is hard to depict it accurately with the
axis-aligned squares that are inherent for the algorithm proposed. Thus, in a
sense it is a worse-than-average scenario.

2Texture reference: Crist�obal Vila. http://www.etereaestudios.com/training img/solitario/solitario en 01.htm

12



On the right, the generated color-coded normals can be seen3. For visual-
ization, the following direct mapping was used4:

(R;G;B) = (nx; ny; nz) (16)

Note that the spherical distortion of the depth-map is removed (in the transform
stage) and the at surface is covered with approximately the same normal color.
The blockness on the bottom-right can be attributed to low precision for nearby
objects (dark depth-map colors).

4.2 Overall Performance

Figures 7 and 8 show 3D reconstructions of the depth map for several values of
threshold.

Figure 6: E�ect of threshold on the face count

The threshold is very important for the degree of subdivision. Figure 6
shows the exact relationship for the current depth-map. The equation of the
�tting line is of the form y(x) = eax; a � 0 and clearly shows an exponential
relationship.

4.3 Median Filter and Reduction

Median �ltering is a well known �ltering method and descriptions can be found
elsewhere. For our purposes, it e�ectively reduces isolated pixels that deviate
from their surrounding ones. Figure 9 shows how after �ltering and reduction,
the writing in black is completely removed5. This, however, is ideal case as the
writing has width of at most 2 pixels most of the time. In some cases, median

3Steps in-between: transform the depth-map (left) to local 3D space, assign a normal to
each point, aggregate the normals to the normal map (right).

4The typical (R;G;B) = 0:5� (nx; ny ; nz) + (0:5; 0:5; 0:5) was not used in favor of better
contrast.

5Actually, the left image is the original, sent through a low-pass, which is typical for
reducing high-frequency (single-pixel, in our case) noise.

13



Figure 7: Reconstructed surface, front view

Figure 8: Reconstructed surface, at 25o degrees

14



�ltering introduces errors, but they typically can be neglected. For example,
consider looking at an edge of a cube. If median �ltering is performed on such
a scene, the edge will be rounded o�. Sensors, however, typically introduce
relatively greater errors, so this e�ect can be neglected.

Figure 9: Median �ltering on an image: source (left) and output (right)

4.4 Running Time

The complete running time of computing each surface in �rgure 7 is shown
below.6 The input depth-map is 192�192 pixels and is reduced to 64�64 after
the �lter and reduce stage. The AGP transfer is not included in the timing.

Threshold 0.20 0.15 0.10 0.07 0.05 0.03
Time [ms] 2 3 4 4 5 7

4.5 Approximation

Section 3.3.1 presents a simpli�cation of the algorithm, which pays o� partic-
ularly if the transform stage is omitted. This means that the reconstructed
surface is built by perturbing a sphere rather than a at surface. Figure 10
shows a comparison with the complete algorithm.

Figure 10: Comparison between the complete algorithm (left) and the approxi-
mation (right)

5 Future Work

The developed algorithm has three major weak spots:

6Tested on NVIDIA GeForce 6200 with 64-bit memory, working in AGP 4x mode.

15



� The reconstructed surface contains holes. Sometimes big quads neighbor
several other quads on each side and it is likely that the smaller quads have
di�erent normals. This is a su�cient condition for surface discontinuity
(�gure 11). A straight-forward approach is to o�set all vertices of the
smaller quads that touch the side of the big quad in image space. For the
current application of path-�nding, this side e�ect is not very important
because the bounding volume of the robot can be enlarged with the size of
the biggest estimated surface crack. For other uses, however, a �x might
be needed.

Figure 11: Surface discontinuity

� The reconstructed surface is continuous. Imagine that the a robot sensor
creates the depth-map. The robot is located in a room with a single box
in front of it. In this scenario the sensor will create a discontinuous depth-
map. The proposed algorithm will connect the front face of the box with
the back wall, which might not be correct. It is di�cult, however, to de-
termine whether such surfaces should be connected. One way is to discard
the generated quad if it is almost parallel to the viewing direction, but
this will often introduce erroneous cracks. Since �nding proper heuristics
is not trivial, this extension is left as a possible future work. Figure 12
depicts how discontinuous are currently handled.

� The generated quads are not planar. The generated mesh might need to
be triangulized or the generated quads attened before further use. For
example, e�cient collision detection systems project each face to 2D by
dropping a coordinate. For non-at faces this might produce errors, but
in the typical case they will probably be unnoticable if the surface could
be non-continuous (see the �rst item above).

16



Figure 12: Reconstruction of a discontinuous depth-map

References

[1] Ziegler G., Tevs A., Theobalt C., Seidel P., 2006. GPU Point List Generation

through Histogram Pyramids, Max Planck Saarbruecken.

[2] Ziegler G., Dimitrov R., Theobalt C., Seidel P., 2006. RealTime QuadTree

Analysis using HistoPyramids, Max Planck Saarbruecken.

[3] Garland M., Heckbertt P, 1997. Surface Simpli�cation Using Quadric Error

Metrics, Carnegie Mellon University.

[4] Yu Z., Wong H. An E�cient Adaptive Simpli�cation Method for 3D Point-

based Computer Graphics Models, ASM

[5] Nevado M., Bermejo J., Casanova E. Obtaining 3D Models of Indoor En-

vironments with a Mobile Robot by Estimating Local Surface Directions,
Robotics and Autonomous Systems.

[6] Liu Y., Emery R., Chakrabarti D., Burgard W., Thrun S. sdfd Using EM

to Learn 3D Models of Indoor Environments with Mobile Robots, Carnegie
Mellon University.

[7] Soucy M., Laurendeau D. Multiresolution surface modeling based on hierar-

chical triangulation, Computer Vision and Image Understanding.

17



Figure 13: Reconstructed surface.
Texture reference: Fagerlund, M. http://www.hypeskeptic.com/mattias/Landscaper/

18


